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Abstract We consider the dimer problem on a planar non-bipartite graph G, where there
are two types of dimers one of which we regard as impurities. Computer simulations reveal a
reminiscence of the Cheerios effect, that is, impurities are attracted to the boundary, which is
the motivation to study this particular graph. Our main theorem is a variant of the Temperley
bijection: a bijection between the set of dimer coverings and the set of spanning forests with
certain conditions. We further discuss some implications of this theorem: (1) the local move
connectedness yielding an ergodic Markov chain on the set of all possible dimer coverings,
and (2) a rough bound for the number of dimer coverings and that for the probability of find-
ing an impurity at a given edge, which is an extension of a result in (Nakano and Sadahiro
in arXiv:0901.4824).

Keywords Dimer model · Impurity · Temperley bijection

1 Introduction

Let G = (V (G),E(G)) be a graph. We say that a subset M of E(G) is a dimer covering
of G if it satisfies the following condition: “for any x ∈ V (G) we can uniquely find e ∈ M

with x ∈ e”. Each element e ∈ M is called a dimer in M . Many results have been obtained
on the dimer covering since the pioneering works [8, 9, 18], and it is still a topic of active
research and rapid development (e.g., [10] and references therein). However, dimer problems
on non-bipartite graphs are not so studied; one of the reason may be that it is hard to find an
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Fig. 1 (1) The graph G , (2) square lattice G0, (3) square lattice G′
0

appropriate notion of the height function [19], and thus we may need an alternative to study
the global structure.

In this paper, we consider two kinds (G(m,n), G(k) to be introduced below) of graphs both
of which are finite subgraphs of G := R(Z2). R(Z2) is the radial graph of Z2 defined as
follows (Fig. 1(1)).

V := V (G) = Z2 ∪
(

Z2 +
(

1

2
,

1

2

))
,

E := E(G) = {(x,y) |x,y ∈ V, |x − y| = 1/
√

2, 1}.
The set V of vertices of G consists of three disjoint subsets: V = V1 ∪ V2 ∪ V3 where

V1 := {(x, y) ∈ Z2 |x − y ∈ 2Z},
V2 := {(x, y) ∈ Z2 |x − y ∈ 2Z + 1},

V3 := Z2 +
(

1

2
,

1

2

)
.

In Fig. 1(1), white circles are vertices in V1, and black circles (resp. black dots) are those in
V2 (resp. V3). V1 ∪ V2 =: V (G0) is the vertex set of a square (and hence bipartite) lattice G0

(Fig. 1(2)), and V3 is the set of points located at the center of faces of G0. Bipartiteness of G0

means V1 and V2 satisfy the following condition: for x, y ∈ V (G0), (x, y) ∈ E(G0) implies
x ∈ V1, y ∈ V2 or x ∈ V2, y ∈ V1. Unless stated otherwise, we do not consider orientation on
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Fig. 2 (1) An example of finite subgraph of G and its dimer covering. Impurities are those on vertical or
horizontal edges. (2) The dimer covering of G is equivalent to the tiling of the corresponding region by
dominoes and impurities

edges and identify e = (x, y) with e = (y, x). The edge set E = E(G) of G is divided into
two disjoint subsets E1 and E2.

E = E1 ∪ E2,

E1 := {(x, y) ∈ E(G) | x ∈ V1 ∪ V2, y ∈ V3},
E2 := {(x, y) ∈ E(G) | x, y ∈ V1 ∪ V2}.

In Fig. 1(1), dotted lines are edges in E1, while solid ones are those in E2. G can also be
regarded as a graph obtained by adding diagonal edges (those in E2) in alternate directions
to a square lattice G′

0 (Fig. 1(3)), whose vertex and edge sets are given by V (G′
0) = V (G),

E(G′
0) = E1.

Let G(⊂ G) be a finite subgraph of G and let M be a dimer covering of G. A dimer
e ∈ M ∩ E1 is also a dimer in a finite subgraph G ∩ G′

0 of the square lattice G′
0. In this

respect, it may be natural to call the dimers e ∈ M ∩ E2 impurities. For instance in Fig. 2(1),
impurities are those on vertical or horizontal edges.

We note that the dimer covering of G is equivalent to the tiling of the corresponding
region by dominoes and impurities (Fig. 2(2)).

e ∈ M ∩ E1 connects vertices between V (G)∩ (V1 ∪ V2) and V (G)∩ V3 while e ∈ M ∩ E2

connects those of V (G)∩(V1 ∪ V2). Therefore the number of impurities is constant and given
by

�{impurities} = |V (G) ∩ V1| + |V (G) ∩ V2| − |V (G) ∩ V3|
2

. (1.1)

Remark 1.1 In this paper, it is always assumed that the RHS of (1.1) is a non-negative
integer. If the locations of impurities are fixed, then this problem becomes a special case of
the dimer-monomer problem where many results are known (e.g., [7]). Our graph G, with
different boundary condition, has been introduced and called the Aztec rectangle with extra
edges, in the new problem section of a review article [17] (Fig. 7). The Aztec rectangle with
extra edges is not studied in this paper, but it can be regarded as G(m,n) given below for
suitable m,n with some impurities being fixed (Remark 4.3).

We next introduce two classes of finite subgraphs of G studied in this paper.

(1) G(m,n)

G(m,n)(⊂ G) is the rectangle which has m-blocks in the horizontal direction and n-blocks in
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Fig. 3 (1) The basic block. (2) An example of G(2) . The double circles are the terminals. We have rotated G
by π

4

the vertical direction. Figure 2(1) shows the case of (m,n) = (3,2). Substituting |V (G) ∩
V1| + |V (G) ∩ V2| = (m + 1)(n + 1), |V (G) ∩ V3| = mn to (1.1), we see that the number of
impurities is equal to (m + n + 1)/2 and the parity of m and n must be opposite.

(2) G(k)

G(k) is made by the following procedure: (i) rotate G by π
4 , (ii) compose arbitrarily by

juxtaposition the “basic block” in Fig. 3(1) so that it is simply connected, and (iii) attach
(2k −1) vertices of V1 which we call “terminals” to the boundary. The number of impurities
is equal to k. An example of G(2) is given in Fig. 3(2).

We consider two kinds of local move operation: square-move (s-move) and triangular-
move (t-move), which transform a dimer covering to another one (Fig. 4).

In Sect. 3, we show the local move connectedness (LMC in short), i.e., any two dimer
coverings of G(m,n), G(k) can be transformed each other by successive applications of local
moves.

By LMC, we can simulate an ergodic Markov chain whose state space is

D(G) := {dimer coverings of G}.
Under a suitable choice of transition probabilities, its stationary distribution is uniform so
that we can obtain (approximately) uniform sample. Carrying out the simulation, we observe
that the impurities are always attracted to the boundary of G, whichever the initial state is.
Figures 5 and 8 show the results for G(60,41), and for a particular G(20) respectively, presented
in terms of the equivalent tiling problem (Fig. 2(2)).

Thus we are led to the following conjecture which is our motivation to consider this
problem.1

1Let D be the number of dimer coverings of G, and let C be the number of dimer coverings with an impurity

being on the center of G. For G = G(3,2) , D = 160, C = 8, and for G = G(4,3), D = 12400, C = 400.
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Fig. 4 (1) Square move (s-move), (2) triangular move (t-move)

Fig. 5 A result of simulation for
G(60,41) , presented in terms of
the equivalent tiling problem.
Impurities are attracted to
boundaries

Conjecture 1.2 For G = G(m,n),G(k), the number of dimer coverings with given configura-
tion of impurities is maximized if all impurities are on the boundary of G.

Figure 6 shows the result of simulation for a Aztec rectangle with extra edges (Remark 1.1,
Fig. 7) of size 60 × 40, where the flavor of the arctic circle theorem can be seen. One may
notice that the direction of dominoes in the melting region is strongly influenced by the
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Fig. 6 A result of simulation for
an Aztec rectangle with extra
edges (width = 60, height = 40)

Fig. 7 The Aztec rectangle with
extra edges of size 7 × 3

Fig. 8 A result of simulation for
G(20) . All terminals are put on
the oblique side

boundary as in the case of the Aztec diamond [5], whereas, in Fig. 5, dominoes away from
the boundary seem to be free from the boundary effect.
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In our previous work [14], we studied the case of 1-impurity and obtained a formula to
compute |D(G(1))| and the probability of finding the impurity at given edge e, which, if G(1)

is the 1-dimensional chain, decreases exponentially as e being far from the terminal of G(1)

and thus Conjecture 1.2 is true for G(1) in the special case of a chain. In Sect. 4, we partially
extend the analysis given in [14] to G(k).

As for related works, Ciucu [3, 4] studied the dimer-monomer problem on the hexagonal
lattice and found that monomers interact each other as if they were the charged particles in
2-dimensional electrostatics. His graph and method are different from ours, but the same
point of view may also be employed to our model.

The rest of this paper is organized as follows. In Sect. 2, we consider graphs G1, G2

with V (G1) = V (G) ∩ V1, V (G2) = V (G) ∩ V2 and show that there is a bijection between
D(G) and the triples consisting of spanning forests of G1, G2 and the configuration of im-
purities satisfying certain condition (Theorems 2.1, 2.8). This bijection can be regarded as a
generalization of the Temperley bijection [11] and gives us the global structure of the con-
figuration of dimers. Such kind of relation is also known to hold for the Abelian sandpile
model [6]. In Sect. 3, we prove LMC by using Theorem 2.8. LMC has been proved by [16]
for normal subgraphs of G . Our proof works only for G(m,n) and G(k) but is elementary and
straightforward. It is possible to obtain a bound for the number of steps needed to transform
two given dimer coverings each other, which depends polynomially on the volume of G.
Thus it would be interesting to study the mixing time of the Markov chain discussed above.
In Sect. 4, we extend the result in [14] to the case of G(k) (k ≥ 2). We do not have exact
formulas for |D(G(k))| and the probability of finding impurities, but have bounds for them.
In 1-dimensional case or the graph is small, this bound gives reasonable answer to Conjec-
ture 1.2 (Sect. A.6). If the graph is large, however, the constant appearing in the inequality is
too large to have a good quantitative understanding of Conjecture 1.2. This is because we ig-
nore the interaction between impurities, the study of which should be done in a future work.
On the other hand, from the argument in Sect. 4 it is possible to understand Conjecture 1.2
heuristically. In fact, in the graph G(k) it is reasonably clear that impurities are attracted to
the terminals. The behavior of impurities in G(m,n) and the Aztec rectangles with extra edges
are understood that some terminals are “hidden” on some part of the boundary (Remark 4.3).
Since G is planar, Kasteleyn’s Theorem [9] gives |D(G)| in terms of the Pfaffian of a hop-
ping matrix on G with appropriate magnetic flux. However, this expression seems not to be
suitable for our purpose to study Conjecture 1.2. In Sect. 5, we discuss some implications of
Theorems 2.1, 2.8, and an application of Theorem 4.1 to 1-dimensional chain.

It is desirable to apply the argument in this paper to other graphs which is briefly dis-
cussed in Sect. A.5. It would also be interesting to consider the high dimensional version of
this problem, yet for which the method in this paper is not applicable.

2 Transform to the Spanning Forest

In this section we construct a mapping from the set of dimer covering of G to the set of
spanning forests of two graphs made from G. We do this for G = G(m,n) in the Sect. 2.1,
and for G = G(k) in the Sect. 2.2. We omit the superscript and write G instead of G(m,n) in
Sect. 2.1 (resp. instead of G(k) in Sect. 2.2). We first set

V1 := V (G) ∩ V1, V2 := V (G) ∩ V2, V3 := V (G) ∩ V3,

E1 := E(G) ∩ E1, E2 := E(G) ∩ E2, G = G(m,n),G(k).
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Fig. 9 (1) G(3,2) (2), (3) G1, G2 corresponding to G(3,2)

2.1 Construction of a Bijection: for G(m,n)

Let G1, G2 be graphs such that V (Gj ) = Vj (j = 1,2) and for x, y ∈ Vj , we set (x, y) ∈
E(Gj) iff we find z ∈ V3, which we call a middle vertex, with (x, z), (z, y) ∈ E1. An explicit
description is given in Fig. 9.

Let k := m+n+1
2 be the number of impurities.

Theorem 2.1 We have a bijection between the following two sets.

D(G) := {dimer coverings on G}
F (G,P ) := {(F1,F2, {ej }k

j=1) |Fj : spanning forests on Gj (j = 1,2)

with k-components,

{ej }k
j=1 ⊂ E2: configuration of impurities,

with condition (P)}

(P)

(1) F1, F2 have no intersections
(2) the trees of F1 are paired with those of F2 by impurities

Under condition (P)(1), a spanning forest of G1 uniquely determines that of G2 so that we
have a redundancy in the statement. Figure 10(1) shows an example of spanning forests
and impurities with condition (P) for G(3,2). In this figure, spanning trees of both G1 and
G2 are composed of three trees for each and are paired by impurities. Figure 10(2) is the
corresponding dimer covering of G.

In Appendix A, we compute |D(G(1,2k))| by using Theorem 2.1.
To prove Theorem 2.1, we construct a map from D(G) to F (G,P ) and its inverse, after

some preparations. First of all, given a dimer covering of G, we draw curves on G, which
we call slit curves [14], as is described in Figs. 11, 12.

We study some properties of these curves. Some inspections lead us to the following
observation.
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Fig. 10 (1) An example of spanning forests and impurities with condition (P). Solid lines indicate a forest
of G1, and dotted lines indicate a forest of G2. (2) The corresponding dimer covering of G

Fig. 11 (1) Drawing slit curves on a unit block in G with a given dimer covering. (2) The slit curves corre-
sponding to the dimer covering in Fig. 2(1)

Fig. 12 An example of dimer covering on G(6) and the corresponding slit curves

Proposition 2.2 (1) By a triangular-move, impurities move along slit curves, but slit curves
remain unchanged.
(2) By a square-move, slit curves may change, but impurities remain unchanged.

Figure 13 explains what they mean by presenting an explicit example.
These slit curves divide G into some subgraphs, which we call domains. Vertices in

V1 and those in V2 are not in the same domain so that, by ignoring middle vertices, these
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Fig. 13 Changes of impurities and slit curves under local moves

Fig. 14 Each impurity is always
penetrated by a slit curve at their
middle and thus lives in two
neighboring domains

domains can be regarded as subgraphs of G1, G2. Each impurity is always penetrated by a
slit curve at their middle and thus lives in two neighboring domains. As an example, Fig. 14
shows the domains corresponding to the dimer covering in Fig. 11(2).

Proposition 2.3

(0) Slit curves do not branch and do not terminate inside G.
(1) Slit curves are not closed.
(2) The number of vertices in each domain (as a subgraph of G) is always odd.
(3) Impurities always make pairings between two neighboring domains.

(0) and (1) implies that every slit curve terminates at boundary. Figure 15 shows an example
of (3).

Proof (0) is clear.
(1) It is the consequence of Proposition 2 in [14].
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Fig. 15 An outline of Fig. 11(2).
The impurity 1 connects domains
A, B , the impurity 2 connects
domains C, D and the impurity 3
connects domains E, F

Fig. 16 (1) A dimer covering, (2) the corresponding configurations of slit curves and impurities, and (3) the
corresponding spanning forests of G1 and G2 with condition (P ). Thick lines indicate a forest of G1, and
dotted lines indicate a forest of G2

(2) By (1), each domain is a tree. It then suffices to note that, when we add a unit block2

to a domain, the number of vertices in this domain increases by two.
(3) The number of impurities is equal to m+n+1

2 , while that of domains is equal to m +
n + 1, because we have no closed curves. By (2), we must have odd number of impurities
in each domain. Since the number of impurities is half of that of domains, each domain has
one impurity, hence impurities have to make pairings between domains. �

By Proposition 2.3(1), each domain, being regarded as a subgraph of G1 or G2, is a tree so
that we obtain spanning forests F1, F2 of G1, G2. Moreover, by Proposition 2.3(3), each tree
of F1, F2 is paired by impurities so that we obtain an element (F1,F2, {ej }k

j=1) ∈ F (G,P ).
Figure 16 is a flowchart of our discussion.

Thus it suffices to construct the inverse mapping to finish the proof of Theorem 2.1.

2Unit block is the one described in Fig. 11(1).
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Fig. 17 Example of spanning
forest in general case

Proposition 2.4 For a given element (F1,F2, {ej }k
j=1) ∈ F (G,P ), we can find the corre-

sponding dimer covering uniquely.

Proof It clearly suffices to find the dimer covering on each tree of spanning forests, being
regarded as a subgraph of G by adding middle vertices. Each tree is further divided into a
number of subtrees by impurities, where the numbers of vertices are always even. It remains
to make the dimer covering on each tree, regarding the impurity as the root. �

The proof of Theorem 2.1 is completed.

Remark 2.5 Let (F1,F2, {ej }k
j=1) ∈ F (G,P ) and let T = {Tj }2k

j=1 be the set of trees which
compose F1,F2. We can regard T as a bipartite graph, by setting Ti, Tj (i 	= j) are adjacent
iff Ti, Tj share a slit curve in their neighbor. Then a configuration of impurities {ej } with
condition (P) is identified with a dimer covering on T .

Remark 2.6 Theorem 2.1 also works for graphs which are made by composing the unit
block arbitrarily, provided it is simply connected and the circumference L of that satisfies
L ∈ 4N + 2, in which case the number of impurities is equal to L+2

2 (Fig. 17).

2.2 Construction of a Bijection: for G(k)

In this subsection, we set G := G(k) and label its terminals as T1, T2, . . . , Tk . To state our
theorem, we need numerous notations which are introduced here.

Notation 1 (1) As is done for G(m,n), let Gj (j = 1,2) be the graph such that V (Gj ) = Vj ,
and for x, y ∈ Vj , we set (x, y) ∈ E(Gj) iff there is z ∈ V3, which we call middle vertex,
with (x, z), (z, y) ∈ E1. Figure 18 shows G1, G2 for the example given in Fig. 3(2). Putting
back the middle vertices on G1, G2 yields subgraphs of G which we call G′

1, G′
2 (Fig. 19).

(2) Let x, y be vertices. We say that x is directly connected to y iff we have the edge
e = (x, y). We say x is a boundary vertex iff x ∈ V3 and lies on the boundary of G.

(3) Let G be the graph obtained from G by the following procedure: (i) add an imaginary
vertex R which we call the root, and (ii) connect all terminals and boundary vertices directly
to R. We call edges of the form e = (R,y) outer edges. G for the example in Fig. 3(2) is
shown in Fig. 20.

(4) Let G1 be the graph such that V (G1) = V1 ∪ {R}, and for x, y ∈ V (G1) we set3

(x, y) ∈ E(G1) iff x = R, y ∈ {Tj }k
j=1, or if there is z ∈ V3 with (x, z), (z, y) ∈ E(G). G1

3We allow multiple edges.
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Fig. 18 G1,G2 corresponding to the example in Fig. 3(2)

Fig. 19 G′
1,G′

2 corresponding to the example in Fig. 3(2)

for the example in Fig. 3(2) is given in Fig. 21(1). Putting back middle vertices on G1 yields
a subgraph G′

1 of G (Fig. 21(2)).

Remark 2.7 For a subgraph A(⊂ G1) of G1, its edge e = (x, y) ∈ E(A) contains a vertex of
V3 at its middle (except e connects a terminal and R). Adding such middle vertices yields a
subgraph A′ of G′

1. We always identify A with A′ and thus regard A as a subgraph of G′
1.

Conversely, for a subgraph A′(⊂ G′
1) of G′

1, ignoring middle vertices from A′ yields a sub-
graph A of G1. Similarly, cutting outer edges from A′, we obtain a subgraph Ã of G′

1. In
both cases, we identify A′ with A or Ã, and regard A′ as a subgraph of G1 or G′

1.

To state an analogue of Theorem 2.1, we further need some notations.
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Fig. 20 G for the example in
Fig. 3(2)

Fig. 21 (1) G1, (2) G′
1 for the example in Fig. 3(2)

Notation 2 Let A(⊂ G′
1) be a subgraph(not necessarily a tree) of G′

1.
(1) We say that A is a TI-tree iff (i) A is a tree, (ii) A contains a unique terminal, and that

terminal is connected directly to R, and (iii) A has no boundary vertices (Fig. 22).
(2) We say that A is a TO-domain iff (i) A is a tree when restricted to G′

1, (ii) A contains
a unique terminal, and that terminal is not connected directly to R, and (iii) A has boundary
vertices, and all of them are connected directly to R (Fig. 23).

We say a TO-domain A is a TO-tree if it is a tree (and so for other ones below), which
means boundary vertex is unique (Fig. 24).

(3) We say that A is a IO-domain iff (i) A is a tree when restricted to G′
1, (ii) A is not

connected to terminals, and (iii) A has boundary vertices all of which are connected directly
to R (Fig. 25). We say a IO-domain A is a IO-tree if it is a tree.

(4) Let l = 1,2, . . . . We say that A is a T lI -tree iff (i) A is a tree, (i) A contains
l-terminals Ti1 , Ti2 , . . . , Til , i1 < i2 < · · · < il , among which only Ti1 is connected directly
to R, and (ii) A has no boundary vertices (Fig. 26).
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Fig. 22 An example of TI-tree

Fig. 23 An example of
TO-domain

(5) We say that A is a T lO-domain iff (i) A is a tree when restricted to G′
1, (ii) A contains

l terminals Ti1 , Ti2 , . . . , Til , and all of them are not connected directly to R, and (iii) A has
boundary vertices, and all of them are connected directly to R (Fig. 27).

(6) Let T be a spanning tree of G1. If we cut T at the root R, we would have a number
of trees, say A1,A2, . . . ,An, which are all connected to R. In this case we say that T is
composed of A1,A2, . . . ,An.
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Fig. 24 An example of TO-tree

Fig. 25 An example of
IO-domain

Theorem 2.8 We have a bijection between the following two sets.

D(G) := {dimer coverings of G}
F (G,Q) := {(

T ,S, {ej }k
j=1

) |T : spanning tree of G1, S: spanning forest of G2,

{ej }k
j=1 ⊂ E2: configuration of impurities, with condition (Q)

}

(Q)

(1) T is composed of k TI-trees, (k − 1) TO-trees, and the other ones are IO-trees.
(2) S is composed of k trees.
(3) T , S are disjoint of each other, and the k TI-trees of T and the k trees of S are paired

by impurities.

Figures 28 and 29 show an example and the corresponding dimer covering.
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Fig. 26 An example of
T 2I -tree. Terminals with
smallest index is connected
directly to R

Fig. 27 An example of
T 2O-domain

Remark 2.9 (1) A spanning tree T of G1 uniquely determines a spanning forest S of G2

under the condition that they are disjoint. (2) In condition (Q)(1), T lI -trees are counted as
one TI-tree and (l − 1) TO-trees (Fig. 30), and T lO-domains are counted as l TO-domains
(Fig. 31, for the graph G(3)).

Proof As in the proof of Theorem 2.1, it suffices to construct mappings TFD : F (G,Q) →
D(G) and TDF(= T −1

FD ) : D(G) → F (G,Q). For TFD : F (G,Q) → D(G), we note that, as
subgraphs of G′

1, G′
2, the numbers of vertices of a TI-tree and trees in G′

2 are odd, while
those of a TO-tree and a IO-tree are even. Putting impurities, they become all even, so that it
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Fig. 28 An illustration of Theorem 2.8. Thick lines indicate a spanning tree T of G1, and thin lines indicate
a spanning forest S of G2

Fig. 29 The corresponding
dimer covering

suffices to find the corresponding dimer covering on each tree by the argument in the proof
of Proposition 2.4.

It then suffices to construct a mapping TDF : D(G) → F (G,Q). Given a dimer covering
on G, we draw the corresponding slit curves as is done in Fig. 11, which divide G into some
domains. Since vertices in V1 and those in V2 are not in the same domain, each domain
can be regarded as a subgraph of either G′

1 or G′
2. By Proposition 2 in [14], slit curves are

not closed, so that domains in G′
1 are either TI-tree, TO-domain, T lI -tree, T lO-domain,

or IO-domain. Moreover, domains in G′
2 are trees. Here we regard those trees and domains

as subgraphs in G′
1, G′

2 (Remark 2.7). In what follows, as is already mentioned, we regard
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Fig. 30 T 2I -tree is counted as
one TI-tree and one TO-tree

Fig. 31 T 2O-tree is counted as two TO-trees

(count) a T lI -tree as a composition of a TI-tree and (l − 1) TO-trees, and regard a T lO-
domain as l TO-domains (Remark 2.9). We then note the following facts.

(i) Because the numbers of vertices in TI-trees and trees in G′
2 are odd, they should have

impurities.
(ii) If �{TO-domains} = l, then �{trees in G′

2} ≥ l + 1.
(iii) �{TI-trees} + �{TO-domains} = 2k − 1.

Using these facts, we proceed
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Fig. 32 The boundary vertex of
TO-tree must be located farther
than the next terminal, in order
that the pairing condition Q(3) is
satisfied

(a) Since we have k impurities, by (i) �{TI-trees} ≤ k, so that by (iii) �{TO-domains} ≥
k − 1.

(b) Since �{trees in G′
2} ≤ k, by (ii) we should have �{TO-domains} ≤ k − 1 so that by (iii)

�{TI-trees} ≥ k.

By (a), (b), it follows that �{TI-trees} = k, �{TO-domains} = k − 1, and thus TI-trees
and trees in G′

2 are paired by impurities. Each TO-domain and IO-domain has only one
boundary vertex so that they are TO-trees and IO-trees respectively, since otherwise the
number of trees in G′

2 would be larger than k.
We next connect the terminals of TI-trees directly to R, connect the boundary vertices of

T lO-trees directly to R, and connect directly to R the terminal Ti1 which has the smallest
index among Ti1 , . . . , Til (i1 < i2 < · · · < il) of T lI -trees. Then we obtain a spanning tree T

of G1. By the arguments above, the spanning tree T of G1, the spanning forest S of G2 and
the k impurities satisfy the condition (Q). The proof of theorem 2.8 is completed. �

Remark 2.10 The boundary vertex of TO-tree must be located farther than the next termi-
nal, since otherwise the pairing condition Q(3) would not be satisfied (Fig. 32). Hence the
mapping TDF : D(G) → F (G,Q) does not exhaust all spanning trees of G1.

When k = 1, we further identify the terminal with the root, and then the statement of
Theorem 2.8 is simplified as follows.

Corollary 2.11 We have a bijection between the following two sets.

D(G) := {dimer coverings in G}
T

(
G1,Q

′) := {
(T1, e) |T1: spanning tree of G1,

e ∈ E2: location of impurity, with condition (Q′)
}

(Q′)
If we regard the spanning tree of G1 as the spanning forest of G1, the impurity lies on the
tree containing the terminal.

Figure 33 describes an example.
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Fig. 33 An example of
Corollary 2.11

3 Local Move Connectedness

In this section we show that both G(m,n) and G(k) have LMC. Let N := |V (G)| be the volume
of G, and for G = G(m,n) let k := (m + n + 1)/2 (= O(N1/2) for largeN) be the number of
impurities.

Theorem 3.1 For G(m,n),G(k), any two dimer coverings can be transformed each other by
successive applications of local moves of O(k2N3/2)-steps.

LMC is proved for normal subgraphs of G in [16], but our proof here is simpler. LMC for
the triangular lattice is proved in [12].

Proof (1) We first show LMC for G := G(k). For any {ej }k
j=1 ⊂ E2(G), let

D
(
G; {ej }k

j=1

) := {
M ∈ D(G) | impurities are on {ej }k

j=1

}
,

DB(G) := {
M ∈ D(G) | all impurities are on the boundary

}
.

We denote by E2(G) ∩ ∂G the set of edges on the boundary of G. Then we clearly have

DB(G) =
⋃

{ej }k
j=1⊂E2(G)∩∂G

D
(
G; {ej }k

j=1

)
.

In any dimer covering, impurities can always be moved to the boundary by applying t-
moves. In other words, for any dimer covering M ∈ D(G), we can find M ′ ∈ DB(G)

which is connected to M .4 If we put all impurities on the boundary and fix them, say on
{ej }k

j=1 ⊂ E2(G) ∩ ∂G, then our dimer problem is reduced to that of the domino tiling on
G \ {ej }k

j=1 (Fig. 34) which are connected via s-moves, in O(N3/2)-steps [13, 19], implying
that elements in D(G; {ej }k

j=1) are connected each other for fixed {ej }k
j=1 ⊂ E2(G) ∩ ∂G.

It then suffices to show that an element in D(G; {ej }k
j=1) is connected to some element

in D(G; {e′
j }k

j=1) for any {ej }k
j=1, {e′

j }k
j=1 ⊂ E2(G) ∩ ∂G, unless D(G; {ej }k

j=1) = ∅ or
D(G; {e′

j }k
j=1) = ∅.

Here we rephrase the LMC for the domino tiling [13, 19] as follows: all possible config-
urations of spanning trees of G1 are connected via s-moves of O(N3/2)-steps, provided all
impurities are fixed and are on the boundary.

4We say henceforth that M,M ′ ∈ D(G) are connected if they can be transformed via local moves.
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Fig. 34 If we fix all impurities
on {ej }k

j=1 ⊂ E2(G) ∩ ∂G, then
our dimer problem is reduced to
that of the domino tiling on
G \ {ej }k

j=1 (the region
surrounded by thick lines)

Fig. 35 Each terminal has two
positions, on which the impurity
can be switched by making a
TI-tree

For any M ∈ DB(G), impurities can occupy two positions on each terminal. By making
a TI-tree on this terminal, which is done in O(N3/2)-steps, the impurity on one of these two
positions can be moved to the other one (Fig. 35).

On the other hand, the impurity on a terminal can be moved to the one in nearest neighbor
by making a T 2I -tree between these two terminals, provided the nearest neighbor terminal
does not have an impurity (Fig. 36).

Therefore, impurities can always be moved from a terminal to the vacant one next to
it, and by repeating this procedure at most O(k2)-steps, an element in D(G; {ej }k

j=1) is
connected to some element in D(G; {e′

j }k
j=1), in O(k2N3/2)-steps.

Remark 3.2 It can happen that D(G; {ej }k
j=1) = ∅ for some {ej }k

j=1 ⊂ E(G)∩∂G. However,
it is always possible to avoid such configuration of impurities in the argument above.

(2) We next show LMC for G(m,n). In fact, it is reduced to that for G(k) by embedding
G = G(m,n) to G′ = G(k), k = m+n+1

2 by attaching some extra vertices on the boundary
(Fig. 37).
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Fig. 36 The impurity on a
terminal can be moved to the
neighbor by making a T 2I -tree
between these two terminals

Fig. 37 G(m,n) can be
embedded to some G(k),
k = m+n+1

2 . Solid lines are

boundary of G(3,2) and dotted
lines are boundary of G(3)

We specify the dimers covering the vertices V (G′) \ V (G), so that M ∈ D(G) can be
regarded as M ′ ∈ D(G′) (Fig. 38(1)). In particular, the bijection theorem for G(k) (Theo-
rem 2.8) also applies for G(m,n).

Moreover, we can also see that, by looking at the slit curve corresponding to Fig. 38(1)
explicitly, the configuration of impurities on the boundary for G and that for G′ are in one to
one correspondence (Fig. 38(2)). Hence by the argument in (1), we can prove LMC without
moving dimers on V (G′) \ V (G), completing the proof of Theorem 3.1. �

Remark 3.3 The argument in the proof of Theorem 3.1 as well as that in [16] also proves
LMC for the Aztec rectangles with extra edges (Fig. 7).

4 Estimate for the Number of Dimer Coverings and Probability of Impurity
Configuration

In [14], we studied one impurity case G(1), in which case dimer covering is given by span-
ning tree and location of the impurity (Corollary 2.11). The uniform distribution on the set
of spanning trees is generated by the loop erased random walk [2], and the number of con-
figurations of impurity depends only on the length of the tree. Thus, by using the theory of
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Fig. 38 (1) We specify the
dimers covering the vertices
V (G′) \ V (G), so that
M ∈ D(G) can be regarded as
M ′ ∈ D(G′). (2) The slit curve
shows DB(G) and DB(G′) are
in one to one correspondence

random walk and the matrix tree theorem, we obtained an explicit formula for |D(G(1))| and
the probability of finding the impurity at given edge. These argument can not directly be
applied to k impurity case (G(k)), because the number of configurations of impurity is not
simply determined by the length of the tree, and the map TDF in Theorem 2.8 (from the set
D(G) of dimer coverings to the set of spanning trees on G1) is not surjective. Thus we can
only deduce bounds for them.

We first introduce some notations. Let G = G(k), N := |V (G)| and

T (G1) := {spanning trees of G1},
T (G1,Q) := {

T ∈ T (G1) | ∃(
T ,S, {ej }k

j=1

) ∈ F (G,Q)
}
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be the set of spanning trees of G1 and the set of those which corresponds to the dimer
coverings of G by the bijection given in Theorem 2.8. Moreover let A = {aij }i,j=1,...,|G1|+1

be a (R|G1|+1 × R|G1|+1)-matrix given by

aij :=

⎧⎪⎨
⎪⎩

deg(i) (i = j),

−1 (∃e = (i, j) ∈ E(G1)),

0 (otherwise).

Let A = {aij }i,j=1,...,|G1| be the restriction of A to G1 and let b = (bj )
|G1|
j=1 , p = (pj )

|G1|
j=1 ∈

R|G1| be

bj :=
{

1 (j corresponds to a terminal),

0 (otherwise),

p := A−1b.

pj is equal to the probability that the random walk starting at j hits the root R through a
terminal. For j ∈ V1, let

E2(j) := {
e = (x, j) ∈ E2 |x ∈ V2

}

be the set of edges in E2 with j being one of endpoint.

Theorem 4.1 (1)

2k|T (G1,Q)| ≤ |D(G)| ≤ |detA|
(

4(N + k)

k

)k

.

(2) For j ∈ V1, the probability of having an impurity on j is estimated by

P(∃ impurity ∈ E2(j)) ≤ Ck

(
2(N + k)

k

)k

pj (4.1)

where Ck depends only on k.

Remark 4.2 pj generically decreases as j is away from the terminals. In fact, it decays
exponentially when G1 is a one-dimensional chain (Sect. A.6), and decays polynomially
when G1 is a rectangle, as j is away from the terminals, In general, the Combes-Thomas
estimate gives us a bound for pj (e.g., [20])

pj ≤ C

d
exp

(
−cd min

k

(
j, {Tk}

))

where d = d(0, σ (A)), σ(A) is the set of eigenvalues of A, and C,c are some positive con-
stants. Thus we have a reasonable answer to Conjecture 1.2 if the graph is one-dimensional
or small enough. However, for large graphs better estimate is desirable to understand Con-
jecture 1.2 quantitatively, since the constant in RHS of (4.1) behaves like Nk for large N .

Remark 4.3 The random walk argument in the proof of Theorem 4.1 implies that, for the
graph G(k), impurities are attracted to the terminals and this explains Conjecture 1.2 at least
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Fig. 39 The Aztec rectangle
with extra edges of size 7 × 3 can
be regarded as a special case of
G(8,3) where some impurities are
fixed at the vertical part of
boundaries

heuristically. For instance, in Fig. 8, terminals are put on the oblique side, to which impuri-
ties are attracted. For the graph G(m,n), we can embed G(m,n) into G(k) (k = m+n+1

2 ) as in the
proof of Theorem 3.1. That is, in a sense, terminals are “hidden” on the boundary to which
impurities are attracted. The Aztec rectangle can be regarded as a special case of G(m,n),
where some of these impurities are fixed at the vertical part of boundaries (Fig. 39). Thus
impurities are attracted to the horizontal part of boundaries (Fig. 6).

Proof (1) Let fj (T ) be the number of impurity configurations of the j -th TI-tree composing
T ∈ T (G1,Q). Then by Theorem 2.8,

F(T ) := f1(T ) · f2(T ) · · · · · fk(T ) =
k∏

j=1

fj (T )

is equal to the number of dimer coverings of G corresponding to T ∈ T (G1,Q) hence

|D(G)| =
∑

T ∈T (G1,Q)

F (T ). (4.2)

Since 2 ≤ fj (T ) ≤ 4 (length of the j -th tree) + 2, we have 2k ≤ F(T ) ≤ ( 4(N+k)

k
)k . Substi-

tuting it to (4.2) and using the matrix tree theorem yields Theorem 4.1(1).
(2) If we have an impurity on E2(j), then we find a TI-tree or a T lI -tree containing the
vertex j through which j is connected to the root. Let C be the event given by

C := {j is connected to the root through a terminal}.
Given T ∈ T (G1,Q), the number of configurations F ′(T ) of the rest (k − 1) impurities is
bounded from above by F ′(T ) ≤ ( 4(N+k)

k
)k . Thus

P(∃ impurity ∈ E2(j)) ≤ |T (G1)|
|D(G)|

∑
T ∈T (G1,Q)

F ′(T )
1C

|T (G1)|

≤ |T (G1)|( 4(N+k)

k
)k

|D(G)|
∑

T ∈T (G1)

1C

|T (G1)|

= |T (G1)|( 4(N+k)

k
)k

|D(G)| pj .

1C is the indicator function of the event C. It remains to substitute the lower bound for
|D(G)| in Theorem 4.1(1) and use Lemma 4.4 below. �
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Lemma 4.4 There are constants Ck depending only on k such that

|T (G1)| ≤ Ck|T (G1,Q)|.

Proof We decompose T (G1) \ T (G1,Q) into disjoint subsets as T (G1) \ T (G1,Q) =⋃K

j=1 Tj in terms of the kind of trees on each terminal, where K depends only on k. Each

T ∈ Tj can be changed into one in T (G1,Q) by a single flip in T . It then suffices to construct
injections from Tj to T (G1,Q) defined by these flips. �

Appendix A

In Appendices A.1–A.5, we discuss some implications of Theorems 2.1 and 2.8. In Appen-
dix A.6, we apply Theorem 4.1 to the 1-dimensional chain.

A.1 One Dimensional Strip

We consider G = G(2k,1) which is the strip of width 1 (Fig. 40). In this subsection we com-
pute D(2k) := |D(G(2k,1))| by using Theorem 2.1.

D(2) = 8 can be seen explicitly. By Theorem 2.1, the length of tree, composing the
spanning forest satisfying the pairing condition, must be less than 2

√
2, and if it lies on the

end, it must be less than
√

2 (Fig. 41).
Hence if we put the block G(2,1) composed of two unit cubes to the left end of G(2k,1),

the tree configuration must be one of the two shown in Fig. 42.
Therefore, taking possible configuration of impurities into consideration, we have

D(2k + 2) = 2 · 2 · 3
2 · D(2k) = 6D(2k) and thus

D(2k) = 8 · 6k−1.

It is also possible to deduce the same result by the transfer-matrix approach [15].

Fig. 40 G(2k,1)

Fig. 41 The length of tree must be less than 2
√

2 (inside) and
√

2 (end)
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Fig. 42 The tree configuration of G(2k+2,1) is given by putting one of the two G(2,1)’s to the left end of
G(2k,1)

Fig. 43 An example of G. The
star corresponds to the root R

A.2 Naive Description of Conjecture 1.2

The discussion in the proof of Theorem 2.1 gives us a naive explanation of Conjecture 1.2.
By Proposition 2.3(0), impurities lying inside G can always be moved to the boundary by
successive applications of t-moves. Hence there are as many configurations with boundary
impurities as those with inner impurities. On the other hand, there are some configurations in
which most curves lie near the boundaries and do not enter inside. Therefore the number of
configuration with boundary impurities would be much more than that with inner impurities.
Furthermore the results of simulations seems to imply that almost all slit curves typically lie
near the boundary whereas there are only few huge ones inside G.

A.3 Relation to the Temperley Bijection

In our notation, the Temperley bijection is stated as follows. Consider G(1) as in Sect. 2.2,
eliminate a vertex P ∈ V2 and these edges such that P is one of their endpoint, and set
G := G(1) \ {P }. Figure 43 gives an example.
Temperley bijection gives a bijection between the following two sets.

D(G) := {dimer coverings of G},
T (G1) := {spanning trees of G1}.
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Fig. 44 (1) An example of spanning tree of G1, (2) the corresponding dimer covering of G

Fig. 45 (1) Dimers are arranged along the orientation of trees, (2) if a pair of neighboring dimers have the
opposite orientation, s-move is possible there

This bijection is similar to that in Corollary 2.11 where the impurity plays a role of the ver-
tex P . Figure 44(1), (2) describes an example of the Temperley bijection which corresponds
to the dimer covering described in Fig. 33.

A.4 Local-move Connectedness

In the proof of Proposition 2.4, we constructed the dimer covering from a triple
(F1,F2, {ej }) ∈ F (G,P ). On the trees of F1, F2, we can introduce orientation by regarding
the impurities as the roots of trees. We then note the following facts. (1) Dimers on those
trees are arranged along this orientation (Fig. 45(1)). (2) Let Tj (j = 1,2) be trees of the
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Fig. 46 Any dimer covering (1) is transformed to the specific one (5)

spanning forest of Gj and let ej ∈ Tj be some neighboring dimers which are parallel each
other. If T1 and T2 do not share the same impurity, and if e1, e2 have the opposite orientation,
then s-move is possible at e1, e2 (Fig. 45(2)).

By moving impurities by t-moves, we can adjust the orientation of each trees so that s-
move is possible at given site with a pair of dimers belonging to different trees. In fact, we
have an (not so simple) algorithm by which any dimer covering can be transformed to the
specific one where all trees are parallel (Fig. 46). These facts give us another proof of LMC.

A.5 Application to Other Graphs

The argument of Theorems 2.1, 2.8 may partially be applied to the Bow-tie lattice, the
triangular lattice, and the hexagonal lattice, which we briefly discuss below.

(1) Bow-tie lattice
The Bow-tie lattice GB is obtained by removing vertical edges which connect vertices in V1,
V2 from those in G = G(m,n) (Fig. 47). Theorem 2.1 can be directly applied, except that im-
purities in the vertical direction are not allowed. Since V (GB) = V (G) and E(GB) ⊂ E(G),
the set D(GB) of the dimer coverings of GB satisfies D(GB) ⊂ D(G), from which we de-
duce the following facts. (a) We can define a pair of local moves under which we have
LMC. (b) If we specify the location of impurities, then the number of dimer coverings
on G and GB are equal. Hence a proof of Conjecture 1.2 for G would also prove that
for GB .
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Fig. 47 Bow-tie lattice

Fig. 48 1-dimensional chain with (2k − 1)-terminals

(2) Triangular lattice
By Theorem 2.1, the dimer covering on the triangular lattice GT is reduced to that of the
Bow-tie lattice with holes.

(3) Hexagonal lattice
The hexagonal lattice with extra edges is also introduced in [17], and one can prove a bi-
jection theorem as Theorems 2.1, 2.8 for this graph. However, this bijection is not useful to
study LMC and the enumeration of dimer coverings, while the method in [16] works well to
prove LMC. The same phenomenon as in Fig. 5 is observed.

A.6 1-dimensional Chain with k-impurities

In this subsection we briefly discuss G(k) where G1 is the 1-dimensional chain with length
2L + 1 (Fig. 48) and show that Conjecture 1.2 is true in this case. We embed G1 into Z and
suppose that V (G1) = {−L,−L + 1, . . . ,L − 1,L}. We fix t1, t2, . . . , t2k−1 ∈ V (G1) and
attach terminals Tj to tj (j = 1,2, . . . ,2k − 1).
Let

H = H0 + V,

be a discrete Schrödinger operator on l2(Z) where the free Laplacian H0 and the potential
V are given respectively by

H0(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

4 (x = y),

−1 (|x − y| = 1),

0 (otherwise),

V (x) :=
{− 1

2 (x = tj , j = 1,2, . . . ,2k − 1),

0 (otherwise).
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Since H is a finite-rank perturbation of H0, we can find a finite set F ⊂ R such that the
spectrum of H satisfies (e.g., [1])

σ(H) = [2,6] ∪ F.

Theorem 1.1 Assume 0 /∈ F . Then we can find positive constants ρ > 0, Ck > 0 depending
only on k such that

P(∃impurity ∈ E2(x)) ≤ CkL
k exp

(
−ρ min

1≤j≤2k−1
|x − tj |

)
, x ∈ V (G1).

We can explicitly check the condition 0 /∈ F by a transfer matrix calculation, and in fact this
condition is generically true. If L is large and min1≤j≤2k−1 |x − tj | is of order L, then the
probability in question is exponentially small and thus Conjecture 1.2 is true in this case.
For a proof of Theorem 1.1, let HL := H |V (G1) and let AL be the matrix associated to G1

defined in Sect. 4. We then have 0 ∈ σ(AL) if and only if 0 ∈ σ(HL). By the condition
0 /∈ F and a perturbative argument, we can find a L-independent constant δ > 0 such that
d(0, σ (AL)) ≥ δ which gives us an exponential decay estimate of the matrix elements of
A−1

L (e.g., [20]). Together with Lemma 4.4, we have the desired bound.
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